

Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform

Fang Fang James C. Hoe Markus Püschel Smarahara Misra

Carnegie Mellon University

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 21 MAY 2003		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
Generation of Cust	dy 5b. GRANT NUMBER					
Walsh-Hadamard Transform			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER		
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO Also see ADM0014	otes 73 , The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	28	RESI UNSIBLE FERSUN	

Report Documentation Page

Form Approved OMB No. 0704-0188

Conventional Approach: Static IP Cores

- > IP cores improve productivity and reduce time-to-market.
- > e.g. Xilinx LogiCore library:

FFT for N=16, 64, 256 and 1024 on 16-bit complex numbers

Alternative Approach: IP Core Generation

➤ Generate IP cores to match specific application requirements (speed, area, power, numerical accuracy, and I/O bandwidth...)

Design space

- DSP transform design can be studied at several levels.
- More math knowledge involved
 - ▶ Bigger design space to explore.

Problem

Problem: gap between transform mathematics and hardware design

What I know:

Linear algebra
Digital signal processing
Adaptive filter theory ...

Finite state machine Pipelining Systolic array ...

Bridge: Formula

> Solution: - Formula representation of DSP transforms

- Automated formula manipulation and mapping

Formula example $DFT_8 = (F_2 \otimes I_4) \cdot D \cdot (I_2 \otimes (I_2 \otimes F_2 \cdots)) \cdot P$

A math guy

Representation Formula Manipulation Mapping

What I know:

Linear algebra
Digital signal processing
Adaptive filter theory ...

A hardware engineer

Finite state machine Pipelining Systolic array ...

Outline

- > Introduction
- Technical Details (illustrated by WHT transform)
 - What are the degrees of design freedom?
 - How do we explore this design space?
- Experimental Results
- Summary and Future work

Walsh-Hadamard Transform

- Why WHT?
 - Typical access pattern for a DSP transform
 - Close to 2-power FFT
 - Study important construct Ä
- Definition

$$WHT_{2^{n}} = \begin{bmatrix} WHT_{2^{n-1}} & WHT_{2^{n-1}} \\ WHT_{2^{n-1}} & -WHT_{2^{n-1}} \end{bmatrix} \qquad WHT_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$WHT_{2^n} = \underbrace{F_2 \otimes F_2 \otimes ... \otimes F_2}_{\text{n fold}} \qquad F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Tensor product $A \otimes B = [a_{k,l} \cdot B]$, where $A = [a_{k,l}]$

From Formula to Architecture

 WHT_2^3

Pease Algorithm

$$WHT_{2^3} = (F_2 \otimes I_4)(I_2 \otimes F_2 \otimes I_2)(I_4 \otimes F_2)$$

$$= L_2^8 (I_4 \otimes F_2) L_2^8 (I_4 \otimes F_2) L_2^8 (I_4 \otimes F_2)$$
Stride permutation L_2^N

Pease Algorithm

$$WHT_{2^3} = (F_2 \otimes I_4)(I_2 \otimes F_2 \otimes I_2)(I_4 \otimes F_2)$$

 $= L_2^{8} (I_4 \otimes F_2) L_2^{8} (I_4 \otimes F_2) L_2^{8} (I_4 \otimes F_2)$ Regular routing

Challenge in Vertical Folding

- Straightforward approach: Memory-based reordering
 - Extra control logic to reorder address
 - Computation speed is limited by memory speed
- Ad-hoc approach: Register routing
 - Hard to automate the process
- Our approach: formula-based matrix factorization

Factorization of Stride Permutation

L₂^Q has Q input ports

 $Q=2^{q}, N=2^{n}$

J_N can be easily folded [1]

Example of $(L_2^{64})_4$ (N=64, Q = 4)

Freedom in Horizontal Folding

- WHT₂ⁿ has n horizontal stages in the flattened design
 - The divisors of n are all the possible folding degrees
 - Example: HF degrees of WHT₂⁶ can be 1, 2, 3, 6
- Effects of more horizontal folding degree

Latency (cycle)	Same	Less pipeline	
Throughput (op / cycle)	Lower	→ depth Þ lower	
Area	less adders, more muxs & wires	throughput	
Speed	Not clear		

Freedom in Vertical Folding

- ➤ WHT₂ⁿ has 2ⁿ vertical ports in the flattened design
 - \Box 1, 2, 4... 2^{n-1} are all possible folding degrees
 - □ *Example*: VF degrees of WHT₂⁶ could be 1, 2, 4, ... 32
- Effects of more vertical folding degree

Latency (cycle)	Longer	Less I/O
Throughput (op / cycle)	Lower	bandwidth Dinger
Area	less adders, more regs & muxs	computation
Speed	Not clear	

Outline

- > Introduction
- > Technical Details
- Experimental Results
- > Summary and Future work

Design Space Exploration

Area vs. Folding Degrees

of LUTS

To achieve the same area, multiple folding options are available.

Latency vs. Folding Degrees (WHT₆₄)

Latency (ns)

Latency vs. Folding Degrees (WHT₆₄)

Latency (ns)

Latency vs. Folding Degrees (WHT₆₄)

Latency is almost unaffected by HF, except comparing flattened design with folded design

Latency (ns)

Throughput vs. Folding Degrees

Throughput (MOP/sec)

Folding always lowers throughput

Comparison with an Existing Design

- WHT₈
 - 8 bit fixed-point
 - □ FPGA: Xilinx Virtex xcv1000e-fg680 Speed grade: -8
 - Compare our fastest generated designs against results reported by Amira, et al. [2]

60% more area80% reduction in latency13 times higher throughput

Area (#of slices)

Latency(ns)

Throughput(MOP/s)

[2] A.Amira et al., "Novel FPGA Implementations of Walsh-Hardamard Transforms for Signal Processing", Visior Image and Signal Processing, IEE Proceedings-, Volume: 148 Issue: 6, Dec. 2001

Comparison with an Existing Design

- WHT₈
 - 8 bit fixed-point
 - □ FPGA: Xilinx Virtex xcv1000e-fg680 Speed grade: -8
 - Compare our smallest generated designs against results reported by Amira, et al. [2]

Less area

Shorter latency

Higher throughput

Area (#of slices)

Latency(ns)

Throughput(MOP/s)

[2] A.Amira et al., "Novel FPGA Implementations of Walsh-Hardamard Transforms for Signal Processing", Visior Image and Signal Processing, IEE Proceedings-, Volume: 148 Issue: 6, Dec. 2001

Summary

- Large performance variations over the design space of horizontal and vertical folding
- Automatic design space exploration through formula manipulation and mapping can find the best trade-off

Future work

More DSP transform

Representation Formula Manipulation Mapping More design decisions

DFT

DCT

DST

DWT

Pipelining

Systolic array

Distributed Arithmetic

Fix-point vs. Floating-point

. . .

Thank you!

Contact: Fang Fang

Email: ffang@cmu.edu

URL: www.ece.cmu.edu/~ffang

